ACT Math Guide: Linear Algebra & Systems

Summit Math Lab

Introduction

"Solving for x" is the most frequent skill tested on the ACT. While you have likely been doing this since 8th grade, the ACT tries to trick you with **Systems of Equations** (two equations, two variables) and **Special Solution Cases** (No Solution vs. Infinite Solutions).

NOTE: Remember the "solution" represents the coordinate of the intersection of the lines.

This guide covers:

- 1. Systems of Equations (Substitution vs. Elimination)
- 2. Special Solution Cases (Parallel Lines & Identical Lines)
- 3. Modeling with Systems (Word Problems)

1. Systems of Equations

A "system" is just a set of two lines. Solving the system means finding the **point where the two** lines intersect (x, y). There are two main ways to do this.

Method A: Substitution

Best used when: One variable is already isolated (e.g., y = 3x + 1).

- 1. Take the isolated expression (3x + 1).
- 2. Plug it into the *other* equation where y used to be.
- 3. Solve for x, then plug back in to find y.

Method B: Elimination (Combination)

Best used when: Both equations are in Standard Form (Ax + By = C) and lined up.

- 1. Multiply one (or both) equations by a number so that one variable cancels out when you add them.
- 2. Add the equations straight down.

Common Mistake: Forgetting to Distribute the Negative

When subtracting equations or substituting expressions like -(3x-2), students often forget to distribute the negative sign.

• Wrong: $5x - (3x - 2) \rightarrow 5x - 3x - 2$

• Right: $5x - (3x - 2) \rightarrow 5x - 3x + 2$

Worked Example (Elimination)

Problem: Solve the system for y.

$$\begin{cases} 2x + 3y = 12\\ 4x - y = 10 \end{cases}$$

Step 1: Align coefficients.

Multiply the bottom equation by $\mathbf{3}$ to cancel the y's.

$$3(4x - y) = 3(10) \rightarrow 12x - 3y = 30$$

Step 2: Add the equations.

$$2x + 3y = 12$$

$$12x - 3y = 30 \quad (+)$$

$$14x + 0y = 42$$

Step 3: Solve for x.

$$14x = 42 \Rightarrow x = 3$$

Step 4: Plug back in to find y.

$$2(3) + 3y = 12 \Rightarrow 6 + 3y = 12 \Rightarrow 3y = 6 \Rightarrow y = 2$$

Answer: y = 2 (The solution is (3, 2)).

2. Special Solution Cases

Sometimes, lines don't cross nicely at one point. The ACT loves these conceptual questions.

The Two Special Cases

Case A: No Solution (\emptyset)

- Graphically: The lines are Parallel. They never touch.
- Algebraically: Variables cancel, leaving a FALSE statement (e.g., 0 = 5).
- Condition: Same Slope, Different Y-Intercept.

Case B: Infinite Solutions (∞)

- Graphically: The lines are Identical.
- Algebraically: Variables cancel, leaving a **TRUE** statement (e.g., 0 = 0).
- Condition: Same Slope, Same Y-Intercept.

Worked Example

Problem: For what value of k does the system below have **no solution**?

$$\begin{cases} 3x + 4y = 10 \\ kx + 8y = 25 \end{cases}$$

Step 1: Understand the Condition.

"No solution" means parallel lines. Parallel lines have the **same slope**.

Step 2: Compare Ratios.

In Standard Form (Ax + By = C), the ratio of x-coefficients must match the ratio of y-coefficients.

$$\frac{3}{k} = \frac{4}{8}$$

Step 3: Solve the proportion.

$$4k = 3(8) \Rightarrow 4k = 24 \Rightarrow k = 6$$

Answer: k = 6.

Practice Problems

- 1. **Basic Elimination:** If 3x 2y = 16 and 2x + 2y = 14, what is the value of x?
- 2. **Substitution:** If y = 4x 1 and 2x + y = 11, what is the value of x?
- 3. **Modeling:** A store sells regular notebooks for \$3 and fancy notebooks for \$5. If a student buys 10 notebooks total and spends \$38, how many fancy notebooks did they buy?
- 4. **No Solution Logic:** Which of the following systems has NO solution?
 - A) y = 3x + 2 and y = -3x + 2
 - B) y = 3x + 2 and y = 3x + 5
 - C) y = 3x + 2 and 2y = 6x + 4
- 5. **Manipulation:** If 5x + 3y = 10, what is the value of 10x + 6y?
- 6. **Substitution Practice:** Solve the system for *y*:

$$\begin{cases} x = 2y + 3 \\ 3x - 5y = 11 \end{cases}$$

7. **Infinite Solutions:** For what value of *c* does the system below have infinitely many solutions?

$$\begin{cases} 2x + y = 4 \\ 6x + 3y = c \end{cases}$$

- 8. Elimination Shortcut: If 2x + 3y = 17 and 2x 3y = 3, what is the value of x? (Hint: You don't need to find y first).
- 9. **Coin Problem:** A jar contains 20 coins consisting only of quarters (\$0.25) and dimes (\$0.10). If the total value is \$3.50, how many quarters are in the jar?
- 10. The "Add Them Up" Trick: If 3x + 4y = 18 and 4x + 3y = 17, what is the value of x + y? (Hint: Do not solve for x and y separately).

Solutions & Explanations

1. Answer: 6

Solution: The y's are already opposites. Add equations: $(3x + 2x) = 16 + 14 \Rightarrow 5x = 30 \Rightarrow x = 6$.

2. Answer: 2

Solution: Substitute (4x-1) for y: $2x+(4x-1)=11\Rightarrow 6x-1=11\Rightarrow 6x=12\Rightarrow x=2$.

3. Answer: 4

Solution: Equations: r + f = 10 and 3r + 5f = 38.

Multiply first eq by -3: -3r - 3f = -30.

Add to second eq: $2f = 8 \Rightarrow f = 4$.

4. Answer: B

Solution: No solution = Parallel lines (same slope, different intercept).

Choice B has slope 3 for both lines, but intercepts 2 and 5.

5. Answer: 20

Solution: Notice that 10x + 6y is exactly double 5x + 3y.

2(5x + 3y) = 2(10) = 20.

6. Answer: y = 2

Solution: Substitute (2y + 3) into the second equation for x.

$$3(2y+3) - 5y = 11 \Rightarrow 6y + 9 - 5y = 11 \Rightarrow y + 9 = 11 \Rightarrow y = 2.$$

7. Answer: c = 12

Solution: "Infinite solutions" means the lines are identical.

Notice that the left side of the second equation (6x + 3y) is exactly 3 times the first equation (2x + y).

Therefore, the constant c must also be 3 times the constant 4.

c = 3(4) = 12.

8. Answer: x = 5

Solution: Add the two equations directly. The 3y and -3y cancel out.

 $(2x + 2x) = 17 + 3 \Rightarrow 4x = 20 \Rightarrow x = 5.$

9. Answer: 10 Quarters

Solution: Eq 1 (Quantity): $q + d = 20 \Rightarrow d = 20 - q$.

Eq 2 (Value): 0.25q + 0.10d = 3.50. (Multiply by 100 to clear decimals: 25q + 10d = 350).

Substitute d: $25q + 10(20 - q) = 350 \Rightarrow 25q + 200 - 10q = 350$.

 $15q = 150 \Rightarrow q = 10.$

10. Answer: 5

Solution: Add the two equations together.

$$(3x + 4x) + (4y + 3y) = 18 + 17 \Rightarrow 7x + 7y = 35.$$

Divide the entire equation by 7: x + y = 5.