
ACT Math Formula Flashcards

Instructions

- 1. **Print** the following pages single-sided.
- 2. Cut out the large rectangles along the Solid Black Lines.
- 3. Fold each card in the middle along the Dashed Gray Line.
- 4. Tape or Glue the back if you want them to be stiffer (optional).

Visual Guide:

 $Scroll\ down\ to\ begin.$

Slope Formula

(Front)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

"Rise over Run"

Slope-Intercept Form

(Front)

$$y = mx + b$$

- m = Slope
- b = y-intercept

Distance Formula

(Front)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(Based on Pythagorean Theorem)

Midpoint Formula

(Front)

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

(Average the x's, Average the y's)

$${\bf The\ Quadratic\ Formula}$$

(Front)

For
$$ax^2 + bx + c = 0$$
:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant

(Front)

$$D = b^2 - 4ac$$

• Positive (+): 2 Real Solutions

• Zero (0): 1 Real Solution

• Negative (—): 2 Imaginary Solutions

Difference of Squares

(Front)

Pattern:

$$a^2 - b^2 = (a+b)(a-b)$$

Example:

$$x^2 - 9 = (x+3)(x-3)$$

Logarithm Definition

(Front)

Convert Log to Exponent:

$$\log_b(x) = y \iff b^y = x$$

Example: $\log_2(8) = 3 \iff 2^3 = 8$

Pythagorean Theorem

(Front)

For Right Triangles Only:

$$a^2 + b^2 = c^2$$

c must be the **Hypotenuse** (longest side).

Circle Area & Circumference

(Front)

Area:

$$A = \pi r^2$$

Circumference:

$$C = 2\pi r$$
 or $C = \pi d$

Equation of a Circle

(Front)

$$(x-h)^2 + (y-k)^2 = r^2$$

- Center: (h, k)
- Radius: r

Area of a Trapezoid

(Front)

$$A = \frac{b_1 + b_2}{2} \cdot h$$

(Average of the bases \times height)

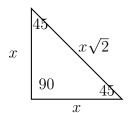
SOH CAH TOA

(Front)

$$\sin = \frac{\text{Opp}}{\text{Hyp}}$$

$$\cos = \frac{\text{Adj}}{\text{Hyp}}$$

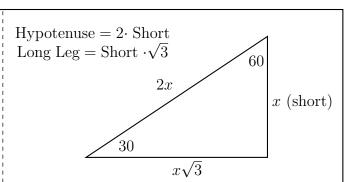
$$\tan = \frac{\text{Opp}}{\text{Adj}}$$


Trig Pythagorean Identity

(Front)

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Special Right Triangle (45-45-90)


(Front)

Hypotenuse = Leg $\cdot \sqrt{2}$

Special Right Triangle (30-60-90)

(Front)

